Section 3.1: Relations and Functions

- A **relation** is any set of ordered pairs in the form: (*x*, *y*).
- The **domain** of a relation is all the x values in the ordered pairs that make up the relation.
- The range of a relation is all the y values in the ordered pairs that make up the relation.
- A **function** is a relation that assigns to each element in its <u>domain</u> *exactly one* element in the <u>range</u>.

A relation is not a function if any points have the same x-value with different y-values A relation is a function if no points have the same x-value with different y-values

• If the domain of a **function** consists of x - coordinates and the range consists of y - coordinates we say y is a function of x.

For Example:

- Find the domain and range of the relation listed below.
- Determine whether the relation is a function or not a function.

Relation R = { (5,1) (5,3) (4,7) (6,8) (2,8) }

- The domain is the *x coordinates* of the points.
- The domain of a relation that consists of a finite number of points is usually represented using set braces.
- The range is the *y coordinates* of the points.
- The range of a relation that consists of a finite number of points is usually represented using set braces.
- Each element in the domain and range only needs to be listed once
- You can write the elements of the domain or range in any order. I usually write the elements in ascending order.

Answer:

Domain {2,4,5,6}

Range {1,3,7,8}

This relation is not a function because there are two points { (5, 1) and (5,3)}that have the same x and have different y's.

For Example:

- The relation graphed below is named R, Create the points implied by the relation.
- Find the domain and range of the relation listed below.
- Determine whether the relation is a function or not a function.

In this example the ordered pairs are graphed as opposed to listed individually.

- The domain is the x-coordinates of the points.
- The domain of a relation that consists of a finite number of points are usually represented using set braces.
- The range is the y-coordinates of the points.
- The range of a relation that consists of a finite number of points is usually represented using set braces.

Answer:

Points of relation R:

 $\mathsf{R} = \{ (1,3) \ (2,1) \ (3,-1) \ (4,2) \ (5,0) \ (6,6) \}$

Domain {1, 2, 3,4, 5, 6} Range {-1, 0, 1, 2, 3, 6}

This relation is a function as no two points that have the same x-value with different y-values. (We can say y is a function of x.)

For Example:	For Example:
Correspondence	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 Call the above relation R, and create the points implied by the relation Find the domain and range of the relation listed below. Determine whether the relation is a function or not a function 	 Call the above relation R, and create the points implied by the relation Find the domain and range of the relation listed below. Determine whether the relation is a function or not a function
Answer: Create points by following the arrows. Make the numbers in the first column "x" and the second column "y".	Answer: R = { (0,0) (1, 1) (2, 4) (3, 9) (4, 16)}
R = { (-4, -3) (-2, 6) (0, 3) (3, 5) (3, 7) }	Domain = {0, 1, 2, 3, 4} Range = {0, 1, 4, 9, 16}
Domain = {-4, -2, 0, 3} Range = {-3, 3, 5, 6, 7}	The relation is a function (since no points have the same $x - value$ with a different
This relation is not a function (since the points (3,5) and (3,7) have the same x with different y's.)	y – value)

For Example: Which of the following relations represent y as a function of x?			
x y 2 3 1 4 1 5 0 6	x y 2 3 1 3 0 3 -1 3	R = { (-4,2) (5,-1) (6,-3) }	
Answer:	Answer: y is a function of x	Answer: y is a function of x	
y is NOT a function of x (1,4) and (1,5) are points of the relation with the same x, but different y.	A function can have duplicate y's, but it cannot have duplicate x's.		
		R = {(1,2) (3,4) (5,6) (7,8) (3,9)}	
		Answer: y is not a function of x as there are duplicate x's.	
		The points (3,4) and (3,9) make this relation not a function.	

Independent and Dependent Variables: For the function y = f(x)

- *x* is the independent variable as it can be any value in the domain
- y is the dependent variable as its value depends on x

For Example:	f(2) is just asking me to evaluate the function at at $x = 2$
Let $f(x) = 3x^2 + 5x - 4$	$f(2) = 3(2)^2 + 5(2) - 4$
Find the following:	f(2) = 3(4) + 5(2) - 4 f(2) = 12 + 10 - 4
• <i>f</i> (2)	Answer: $f(2) = 18$
• f(-1) • f(a)	$f(-1) = 3(-1)^2 + 5(-1) - 4$
Each of these asks me to evaluate the function at	f(-1) = 3(1) + 5(-1) - 4 f(-1) = 3 + (-5) - 4
the value given inside the	Answer: $f(-1) = -6$
parenthesis.	$f(a) = 3(a)^2 + 5(a) - 4$ (note $(a)^2 = a^2$ and $5(a) = 5a$)
<u>This does not ask you to</u> <u>multiply by the value</u> <u>inside the parenthesis.</u>	Answer: $f(a) = 3a^2 + 5a - 4$ There is nothing that should be done with this answer. It would be wrong to set this answer equal to zero and solve for x.

Section 3.1: Relations and functions

#1-4: Find the following:

a) Create the points implied by the relation.

b) Find the domain and range of the relation listed below.

c) Determine whether y is a function of x.

#5-8: Find the following:

a) Find the domain and range of the relation listed below.

b) Determine whether the if y is a function of x.

9) Find the following: $f = \{(3, -2), (5, 6), (7, 3), (1, -2), (4, 1), (6, 7)\}$ a) The domain of f b) The range of the f c) f(3) d) *f*(1) e) all values of x such that f(x) = -2f) all values of x such that f(x) = 610) Find the following: $f = \{(1, -3), (2, -3), (-4, 2), (5, -2), (-3, 5), (6, 7)\}$ a) The domain of f b) The range of the f c) *f*(2) d) f(5) e) all values of x such that f(x) = -3f) all values of x such that f(x) = 211) Find the following: $g = \{(9,2) (1,9) (4,1) (2,4) (6,1)\}$ a) The domain of g b) The range of the g c) g(9) d) g(4)e) all values of x such that g(x) = 9f) all values of x such that g(x) = 112) Find the following: $g = \{(5, -3) (-3, 2) (2, -3) (1, 2) (6, 1)\}$ a) The domain of g b) The range of the g c) g(1) d) g(-3)e) all values of x such that g(x) = -3f) all values of x such that g(x) = 1

	13) Given the graph of f(x), find the following:
(-1,2)(1,2) (4,1) (2,-3) (5,-3)	a) The domain of f b) The range of the f c) $f(2)$ d) $f(1)$ e) all values of x such that $f(x) = 2$ f) all values of x such that $f(x) = -3$

(3,7)	14) Given the graph of $f(x)$, find the following:
(-2,3) (4,3) (7,1) (1,-3)	a) The domain of f b) The range of the f c) $f(1)$ d) $f(3)$ e) all values of x such that $f(x) = 3$ f) all values of x such that $f(x) = 1$

y		15) Given the graph of g(x), find the following:
(-5,4) (-3,2) (1,2) (4,-3) (2,-5)	x	a) The domain of g b) The range of the g c) $g(2)$ d) $g(4)$ e) all values of x such that $g(x) = 4$ f) all values of x such that $g(x) = -5$

(0,0) (4,0) x (-1,-5) (5)-5)	19) Given the graph of h(x), find the following: a) $h(-1)$ b) $h(2)$ c) all values of x such that $h(x) = -5$ d) all values of x such that $h(x) = 0$
---------------------------------	--

