Section 3.1: Relations and Functions

- A relation is any set of ordered pairs in the form: (x, y).
- The domain of a relation is all the x-values in the ordered pairs that make up the relation.
- The range of a relation is all the y-values in the ordered pairs that make up the relation.
- A function is a relation that assigns to each element in its domain exactly one element in the range.

A relation is not a function if any points have the same x-value with different y-values A relation is a function if no points have the same x-value with different y-values

- If the domain of a function consists of x - coordinates and the range consists of y - coordinates we say y is a function of x.

For Example:

- Find the domain and range of the relation listed below.
- Determine whether the relation is a function or not a function.

Relation $R=\{(5,1)(5,3)(4,7)(6,8)(2,8)\}$

- The domain is the x - coordinates of the points.
- The domain of a relation that consists of a finite number of points is usually represented using set braces.
- The range is the y-coordinates of the points.
- The range of a relation that consists of a finite number of points is usually represented using set braces.
- Each element in the domain and range only needs to be listed once
- You can write the elements of the domain or range in any order. I usually write the elements in ascending order.

Answer:

Domain $\{2,4,5,6\}$

Range $\{1,3,7,8\}$

This relation is not a function because there are two points $\{(5,1)$ and $(5,3)\}$ that have the same x and have different y 's.

For Example:

- The relation graphed below is named R, Create the points implied by the relation.
- Find the domain and range of the relation listed below.
- Determine whether the relation is a function or not a function.

In this example the ordered pairs are graphed as opposed to listed individually.

- The domain is the x-coordinates of the points.
- The domain of a relation that consists of a finite number of points are usually represented using set braces.
- The range is the y-coordinates of the points.
- The range of a relation that consists of a finite number of points is usually represented using set braces.

Answer:

Points of relation R :
$R=\{(1,3)(2,1)(3,-1)(4,2)(5,0)(6,6)\}$

Domain $\{1,2,3,4,5,6\}$ Range $\{-1,0,1,2,3,6\}$

This relation is a function as no two points that have the same x-value with different y-values. (We can say y is a function of x.)

For Example: Which of the following relations represent y as a function of x ?				
x	y	x	y	
2	3	2	3	
1	4	1	3	
1	5	0	3	
0	6	-1	3	$R=\{(-4,2)(5,-1)(6,-3)\}$
Answer: y is NOT a function of x $(1,4)$ and $(1,5)$ are points of the relation with the same x, but different y.		Answer: y is a function of x A function can have duplicate y 's, but it cannot have duplicate x 's.		Answer: y is a function of x
		$R=\{(1,2)(3,4)(5,6)(7,8)(3,9)\}$		
		Answer: y is not a function of x as there are duplicate x 's.		
		The points $(3,4)$ and $(3,9)$ make this relation not a function.		

Function Notation: For the function $y=f(x)$

Function Notation
$y=f(x)$

Output Name of Function

- We read $f(x)$ as:
f of x
or: the value of f at x.
- NOTE $f(x)$ does not mean multiplication: that is $f(x)$ does not mean $f \times(x)$
- f is the name of the function
- x is the domain (input) value
- y is the range (output) value

The range of a function consists of all the possible $y^{\prime} s\left(f(x)^{\prime} s\right)$ that can be generated from the $x^{\prime} s$ in the domain of the function.

- The variable y and the function symbol $f(x)$ are usually interchangeable in most problems. When I see function notation I think " y ".

For Example:

- The function described below is named " f "
- The variable in the parenthesis is the "domain / input" variable.
x is the domain variable
- $2 x$ is the range (output) value
- The $f(x)$ symbol works like a y

In fact, the graphs of $f(x)=3 x+1$ and $y=3 x+1$ are identical

Function Notation

Independent and Dependent Variables: For the function $y=f(x)$

- x is the independent variable as it can be any value in the domain
- y is the dependent variable as its value depends on x

Consider the function $y=f(x)$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-8
-1	0
0	0
1	-2
2	0
3	12

- Evaluate the function at
$x=$ given number
Asks to find the y - coordinate that relates to the of the point that has the given number as its $x-$ coordinate.
- $\quad f$ (given number)

Asks to find the y-coordinate that relates to the of the point that has the given number as its $x-$ coordinate. This is asking the same question as above. This is the more common way to ask this question.

- Find all values of x such that $f(x)=$ given number Wants the x - coordinate of all points that have the given number as a y-coordinate.

Find the following:

- The domain of f
- The range of the f
- Evaluate the function at $x=-1$
- $f(-1)$
- Evaluate the function at $x=3$
- $f(3)$
- all values of x such that $f(x)=-8$
- all values of x such that $f(x)=0$

Answer:

- Domain $=\{-2,-1,0,1,2,3\}$ (all the x-values)
- Range $=\{-8,-2,0,12\}$ (1 only need to write each value once) (all the y-values)
- Evaluate the function at $x=-1$

Answer: 0 or $f(-1)=0$.

- $f(-1)=0$
- Evaluate the function at $x=3$

Answer: 12 or $f(3)=12$

- $f(3)=12$
- All values of x such that $f(x)=-8$, this is asking me to find the x-coordinate for any value of x that corresponds to -8 in the $f(x)$ column Answer: $x=-2$
- All values of x such that $f(x)=0$

Answer: $x=-1,0$ and 2

How to answer questions about a function when given a function defined in table form:

- $\quad f$ (given number)

Asks to find the y-coordinate that relates to the point that has the given number as its x - coordinate.

- Find all values of x such that $f(x)=$ given number Wants the x-coordinate of all points that have the given number as a $y-$ coordinate.

Consider the function $y=f(x)$ graphed in the left panel.

Find the following:

- The domain of f
- The range of the f
- $f(-1)$
- $f(-2)$
- all values of x such that $f(x)=2$
- all values of x such that $f(x)=5$

Answer:

- Domain $=\{-2,-1,0,1,2\}$
(all the x-values)
- Range $=\{-1,2,5,8,11\}$
(all the y-values)
- $f(-1)=8$
(the y-coordinate of the point that has $x=-1$
- $f(-2)=11$
(the y-coordinate of the point that has $x=-2$)
- all values of x such that $f(x)=2$:

Answer: $x=1$
(the x-coordinate of any point that has a $y=2$)

- all values of x such that $f(x)=5$:
$x=0$
(all the x-coordinates of any point that has $y=5$)

For Example: This is a graph the function named: $\mathrm{g}(\mathrm{x})$ How to answer questions about a function when given a function defined in table form: - $\quad g$ (given number) Asks to find the y-coordinate that relates to the point that has the given number as its x - coordinate. - Find all values of x such that $g(x)=$ given number Wants the x-coordinate of all points that have the given number as a y coordinate.	Find the following: - $g(6)$ - $g(0)$ - all values of x such that $g(x)=-4$ - all values of x such that $g(x)=5$ Answer: $g(6)=5$ (the y-coordinate of all points that have $x=6$) $g(0)=5$ (the y-coordinate of all points that have $x=0$) all values of x such that $g(x)=-4: \quad x=3$ (the x-coordinate of all points that have a y - coordinate of $y=-4$) all values of x such that $g(x)=5: x=0,6$ (the x-coordinate of all points that have a y - coordinate of $y=5$)

For Example:	$f(2)$ is just asking me to evaluate the function at at $x=2$
Let $f(x)=3 x^{2}+5 x-4$	$f(2)=3(2)^{2}+5(2)-4$
Find the following:	$\begin{aligned} & f(2)=3(4)+5(2)-4 \\ & f(2)=12+10-4 \end{aligned}$
- $f(2)$ - $f(-1)$ - $f(a)$	Answer: $f(2)=18$ $f(-1)=3(-1)^{2}+5(-1)-4$
Each of these asks me to evaluate the function at	$\begin{aligned} & f(-1)=3(1)+5(-1)-4 \\ & f(-1)=3+(-5)-4 \end{aligned}$
the value given inside the parenthesis.	Answer: $f(-1)=-6$ $f(a)=3(a)^{2}+5(a)-4\left(\text { note }(a)^{2}=a^{2} \text { and } 5(a)=5 a\right)$
This does not ask you to	Answer: $f(a)=3 a^{2}+5 a-4$
multiply by the value inside the parenthesis.	There is nothing that should be done with this answer. It would be wrong to set this answer equal to zero and solve for x .

Section 3.1: Relations and functions
\#1-4: Find the following:
a) Create the points implied by the relation.
b) Find the domain and range of the relation listed below.
c) Determine whether y is a function of x.

\#5-8: Find the following:
a) Find the domain and range of the relation listed below.
b) Determine whether the if y is a function of x.

9) Find the following: $f=\{(3,-2),(5,6),(7,3),(1,-2),(4,1),(6,7)\}$
a) The domain of f
b) The range of the f
c) $f(3)$
d) $f(1)$
e) all values of x such that $f(x)=-2$
f) all values of x such that $f(x)=6$
10) Find the following: $f=\{(1,-3),(2,-3),(-4,2),(5,-2),(-3,5),(6,7)\}$
a) The domain of f
b) The range of the f
c) $f(2)$
d) $f(5)$
e) all values of x such that $f(x)=-3$
f) all values of x such that $f(x)=2$
11) Find the following: $g=\{(9,2)(1,9)(4,1)(2,4)(6,1)\}$
a) The domain of g
b) The range of the g
c) $g(9)$
d) $g(4)$
e) all values of x such that $g(x)=9$
f) all values of x such that $g(x)=1$
12) Find the following: $g=\{(5,-3)(-3,2)(2,-3)(1,2)(6,1)\}$
a) The domain of g
b) The range of the g
c) $g(1)$
d) $g(-3)$
e) all values of x such that $g(x)=-3$
f) all values of x such that $g(x)=1$

14) Given the graph of $f(x)$, find the following:
a) The domain of f
b) The range of the f
c) $f(1)$
d) $f(3)$
e) all values of x such that $f(x)=3$
f) all values of x such that $f(x)=1$

15) Given the graph of $\mathrm{g}(\mathrm{x})$, find the following:
a) The domain of g
b) The range of the g
c) $g(2)$
d) $g(4)$
e) all values of x such that $g(x)=4$
f) all values of x such that $g(x)=-5$

$|$| 17) Given the graph of $g(x)$, find the following: |
| :--- |
| a) $g(3)$ |
| b) $g(-3)$ |
| c) all values of x such that $g(x)=3$ |
| d) all values of x such that $g(x)=0$ |

18) Given the graph of $g(x)$, find the following:
a) $g(0)$
b) $g(-4)$
c) all values of x such that $g(x)=-4$
d) all values of x such that $g(x)=0$

20) Given the graph of $h(x)$, find the following:
a) $h(0)$
b) $h(4)$
c) all values of x such that $h(x)=-4$
d) all values of x such that $h(x)=0$

